Possible Role of Wetlands, Permafrost, and Methane Hydrates in the Methane Cycle under Future Climate Change: a Review
نویسندگان
چکیده
[1] We have reviewed the available scientific literature on how natural sources and the atmospheric fate of methane may be affected by future climate change. We discuss how processes governing methane wetland emissions, permafrost thawing, and destabilization of marine hydrates may affect the climate system. It is likely that methane wetland emissions will increase over the next century. Uncertainties arise from the temperature dependence of emissions and changes in the geographical distribution of wetland areas. Another major concern is the possible degradation or thaw of terrestrial permafrost due to climate change. The amount of carbon stored in permafrost, the rate at which it will thaw, and the ratio of methane to carbon dioxide emissions upon decomposition form the main uncertainties. Large amounts of methane are also stored in marine hydrates, and they could be responsible for large emissions in the future. The time scales for destabilization of marine hydrates are not well understood and are likely to be very long for hydrates found in deep sediments but much shorter for hydrates below shallow waters, such as in the Arctic Ocean. Uncertainties are dominated by the sizes and locations of the methane hydrate inventories, the time scales associated with heat penetration in the ocean and sediments, and the fate of methane released in the seawater. Overall, uncertainties are large, and it is difficult to be conclusive about the time scales and magnitudes of methane feedbacks, but significant increases in methane emissions are likely, and catastrophic emissions cannot be ruled out. We also identify gaps in our scientific knowledge and make recommendations for future research and development in the context of Earth system modeling.
منابع مشابه
Interactive comment on “ A model of the methane cycle , permafrost , and hydrology of the Siberian continental margin
This paper presents a 2-D model of the methane cycle for the Siberian continental margin, including permafrost, hydrates and transient fluxes. Model is described in a differential way compared to the initial version used for another region (section 2). Results are presented (section 3) concerning initial spinup, impact of freshwater hydrology, glacial cycles and upcoming global warming. A discu...
متن کاملGas hydrates: entrance to a methane age or climate threat?
Methane hydrates, ice-like compounds in which methane is held in crystalline cages formed by water molecules, are widespread in areas of permafrost such as the Arctic and in sediments on the continental margins. They are a potentially vast fossil fuel energy source but, at the same time, could be destabilized by changing pressure–temperature conditions due to climate change, potentially leading...
متن کاملLimited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf
In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a reg...
متن کاملSensitivity of the carbon cycle in the Arctic to climate change
The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a comprehensive review of the status of...
متن کاملReview of methane mitigation technologies with application to rapid release of methane from the Arctic.
Methane is the most important greenhouse gas after carbon dioxide, with particular influence on near-term climate change. It poses increasing risk in the future from both direct anthropogenic sources and potential rapid release from the Arctic. A range of mitigation (emissions control) technologies have been developed for anthropogenic sources that can be developed for further application, incl...
متن کامل